Spectra 300 TEM
High resolution TEM and STEM microscope for all materials science and semiconductor applications.
For scientists to advance their understanding of complex samples and develop innovative materials, they must have access to robust, precise instrumentation capable of correlating form and function, as well as resolving space, time and frequency. Thermo Fisher Scientific introduces the Thermo Scientific Spectra 300 (S)TEM – the highest resolution, aberration corrected, scanning transmission electron microscope for all materials science applications. Built on an ultra-stable foundationAll Spectra 300 (S)TEM's are delivered on new platforms designed to offer an unprecedented level of mechanical stability and highest imaging quality though passive and (optional) active vibration isolation. The system is housed in a fully redesigned enclosure with a built-in on-screen display for convenient specimen loading and removal. For the first time, full modularity and upgradeability can be offered between uncorrected and single-corrected configurations with variable heights, allowing maximum flexibility for different room configurations. | ||
Spectra 300 (S)TEM: A redesigned base and enclosure deliver the highest imaging quality with integrated passive or active vibration isolation configuration options.
Key features
The Spectra 300 (S)TEM can be optionally equipped with either a high-energy-resolution extreme field emission gun (X-FEG)/Mono or an ultra-high-energy resolution X-FEG/UltiMono. The monochromators of both sources are automatically excited and tuned with single-click operation to achieve the highest energy resolution possible on each configuration by using OptiMono or OptiMono+ respectively (see video below).
The X-FEG/Mono can be automatically tuned from 1 eV down to 0.2 eV, while the X-FEG/UltiMono can be automatically tuned from 1 eV down to <30 meV.
Both sources can be operated from 30 – 300 kV to accommodate the widest range of specimens. Both can also be run in standard mode, with the monochromators switched off, to accommodate experiments that require high brightness, including STEM EDS mapping, ultra-high-resolution STEM, or high total current, such as TEM imaging, all with no compromise to the other specifications of the system. This flexibility gives the Spectra 300 (S)TEM the capability to function in settings where a large range of experiments are expected to be performed on one system.
The Spectra 300 (S)TEM can optionally be powered by a new cold field emission gun (X-CFEG). The X-CFEG has extremely high brightness (>>1.0 x 108 A/m2/Sr/V*), low energy spread (<0.4 eV), and can operate from 30 – 300 kV. This provides simultaneously high-resolution STEM imaging with high probe currents for high throughput, fast acquisition STEM analytics in parallel with high-energy resolution. With the powerful combination of X-CFEG and the S-CORR probe aberration corrector, sub-Angstrom (<0.8 Å) STEM-imaging resolution with over 1000 pA of probe current can be routinely achieved.